4. Công thức tính khoảng cách từ điểm đến đường thẳng
3. Khoảng cách từ điểm đến đường thẳng trong không gian là gì ?2. Đường thẳng là gì ?1. Điểm là gì ?Trong hình học không gian Oxyz thường có dạng toán tìm khoảng cách từ một điểm đến một đường thẳng cho trước. Đây là một dạng toán khá đơn thuần và phổ cập mà chỉ cần nhớ đúng mực công thức và vận dụng vào giải toán thuận tiện. Hãy theo dõi bài viết này để khám phá công thức tính khoảng cách từ 1 điểm đến đường thẳng nhé !
Mục lục bài viết
Trong hình học không gian Oxyz thường có dạng toán tìm khoảng cách từ một điểm đến một đường thẳng cho trước. Đây là một dạng toán khá đơn giản và phổ biến mà chỉ cần nhớ chính xác công thức và áp dụng vào giải toán dễ dàng. Hãy theo dõi bài viết này để tìm hiểu công thức tính khoảng cách từ 1 điểm đến đường thẳng nhé!
1. Điểm là gì?
Điểm trong khái niệm toán học đơn thuần được thừa nhận như một khái niệm xuất phát để thiết kế xây dựng môn hình học, được tưởng tượng là một thứ rất nhỏ bé, không có kích cỡ hay kích cỡ bằng không.
2. Đường thẳng là gì?
Đường thẳng là một đường dài vô hạn, mỏng mảnh vô cùng và thẳng tuyệt đối.
3. Khoảng cách từ điểm đến đường thẳng trong không gian là gì?
Trong không gian cho điểm A và đường thẳng Δ bất kể. Gọi điểm B là hình chiếu của điểm A lên đường thẳng Δ. Khi đó độ dài đoạn thẳng AB chính là khoảng cách từ điểm A lên đường thẳng Δ.
Khoảng cách từ điểm đến đường thẳng trong không gian Nói cách khác, khoảng cách từ điểm đến đường thẳng trong không gian là khoảng cách giữa điểm và hình chiếu của nó trên đường thẳng. Ký hiệu là d ( A, Δ ).
4. Công thức tính khoảng cách từ điểm đến đường thẳng
Công thức tính khoảng cách từ điểm đến đường thẳng
5. Cách tính khoảng cách từ điểm đến đường thẳng bằng tích có hướng
Cách tính khoảng cách từ điểm đến đường thẳng bằng tích có hướng
Ví dụ:
Ví dụ về tính khoảng cách từ điểm đến đường thẳng bằng tích có hướng
Lời giải:
Lời giải của ví dụ trên
6. Cách tính khoảng cách giữa 2 điểm
Cách tính khoảng cách giữa 2 điểm
Ví dụ: Trong mặt phẳng Oxy, cho điểm A (1;2) và điểm B(-3;4). Tính độ dài đoạn thẳng AB.
Lời giải:
Lời giải của ví dụ trên
7. Bài tập tính khoảng cách từ một điểm đến một đường thẳng
Bài 1: Cho một đường thẳng có phương trình có dạng Δ: – x + 3y + 1 = 0. Hãy tính khoảng cách từ điểm Q (2;1) tới đường thẳng Δ.
Lời giải:
Lời giải của bài tập 1
Bài 2:
Bài tập 2
Lời giải:
Lời giải của bài tập 2
Bài 3:
Bài tập 3
Lời giải:
Lời giải của bài tập 3
Bài 4: Đường tròn (C) có tâm là gốc tọa độ O(0; 0) và tiếp xúc với đường thẳng (d): 8x + 6y + 100 = 0. Tính bán kính R của đường tròn (C).
Lời giải:
Lời giải của bài tập 4
Bài 5: Tính Khoảng cách từ giao điểm của hai đường thẳng (a): x – 3y + 4 = 0 và (b): 2x + 3y – 1 = 0 đến đường thẳng ∆: 3x + y + 16 = 0.
Lời giải:
Lời giải của bài tập 5
Bài 6: Cho hai điểm A( 2; -1) và B( 0; 100) ; C( 2; -4) .Tính diện tích tam giác ABC?
Lời giải:
Lời giải của bài tập 6
Bài 7:
Bài tập 7
Lời giải:
Lời giải của bài tập 7
8. Một số lưu ý về tính khoảng cách từ điểm đến đường thẳng
– Cần xác lập được khái niệm khoảng cách từ điểm đến đường thẳng là như thế nào. – Đưa phương trình đường thẳng về dạng tổng quát trước khi vận dụng công thức tính khoảng cách từ điểm đến đường thẳng. – Nên sử dụng máy tính cầm tay để hoàn toàn có thể tương hỗ tính khoảng cách từ điểm đến đường thẳng một cách nhanh gọn và đúng chuẩn nhất.
Xem thêm: Đại từ – Wikipedia tiếng Việt
Sử dụng máy tính cầm tay để tính khoảng cách từ điểm đến đường thẳng nhanh gọn
Xem thêm
Source: https://bem2.vn
Category: TỔNG HỢP