Sách Giải Bài Tập Toán Lớp 9 Bài 6: Hệ Thức Vi-ét Và Ứng Dụng

Mục lục bài viết

Xem toàn bộ tài liệu Lớp 9: tại đây

Sách giải toán 9 Bài 9 : Hệ thức Vi-ét và ứng dụng giúp bạn giải những bài tập trong sách giáo khoa toán, học tốt toán 9 sẽ giúp bạn rèn luyện năng lực suy luận hài hòa và hợp lý và hợp logic, hình thành năng lực vận dụng kết thức toán học vào đời sống và vào những môn học khác :

Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 50: Hãy tính x1 + x2, x1x2.

Giải bài tập Toán 9 | Giải Toán lớp 9 Tra Loi Cau Hoi Toan 9 Tap 2 Bai 6 Trang 50 1

Lời giải

Giải bài tập Toán 9 | Giải Toán lớp 9 Tra Loi Cau Hoi Toan 9 Tap 2 Bai 6 Trang 50 2

Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 51: Cho phương trình 2×2 – 5x + 3 = 0.

a ) Xác định những thông số a, b, c rồi tính a + b + c .
b ) Chứng tỏ rằng x1 = 1 là một nghiệm của phương trình .
c ) Dùng định lý Vi-ét để tìm x2 .

Lời giải

a ) a = 2 ; b = – 5 ; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
b ) Thay x = 1 vào phương trình ta được :
2.12 – 5.1 + 3 = 0
Vậy x = 1 là một nghiệm của phương trình
c ) Theo định lí Vi-et ta có :
x1. x2 = c / a = 3/2 ⇒ x2 = 3/2

Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 51: Cho phương trình 3×2 + 7x + 4 = 0.

a ) Xác định những thông số a, b, c rồi tính a – b + c .
b ) Chứng tỏ rằng x1 = – 1 là một nghiệm của phương trình .
c ) Tìm nghiệm x2 .

Lời giải

a ) a = 3 ; b = 7 ; c = 4
⇒ a + b + c = 3 – 7 + 4 = 0
b ) Thay x = – 1 vào phương trình ta được :
3. ( – 1 ) 2 + 7. ( – 1 ) + 4 = 0
Vậy x = – 1 là một nghiệm của phương trình
c ) Theo định lí Vi-et ta có :
x1. x2 = c / a = 4/3 ⇒ x2 = 4/3 : ( – 1 ) = – 4/3

Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 52: Tính nhẩm nghiệm của các phương trình:

Xem thêm  Giúp Mình Lấy Lại Ứng Dụng Bị Ẩn Trên Iphone, Ipad Với Ios 11

a ) – 5×2 + 3 x + 2 = 0 ;
b ) 2004×2 + 2005 x + 1 = 0 .

Lời giải

a ) – 5×2 + 3 x + 2 = 0 ;
Nhận thấy phương trình có a + b + c = 0 nên phương trình có 2 nghiệm
x1 = 1 ; x2 = c / a = ( – 2 ) / 5
b ) 2004×2 + 2005 x + 1 = 0
Nhận thấy phương trình có a – b + c = 0 nên phương trình có 2 nghiệm
x1 = – 1 ; x2 = – c / a = ( – 1 ) / 2004

Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 52: Tìm hai số biết tổng của chúng bằng 1, tích của chúng bằng 5.

Lời giải

Hai số cần tìm là nghiệm của phương trình x2 – x + 5 = 0
Δ = b2 – 4 ac = ( – 1 ) 2 – 4.1.5 = – 19 < 0 ⇒ phương trình vô nghiêm Vậy không sống sót 2 số có tổng bằng 1 và tích bằng 5

Bài 6: Hệ thức Vi-ét và ứng dụng

Bài 25 (trang 52 SGK Toán 9 tập 2): Đối với mỗi phương trình sau, kí hiệu x1 và x2 là hai nghiệm (nếu có). Không giải phương trình, hãy điền vào những chỗ trống (…):

a) 2×2 – 17x + 1 = 0;

Δ = … ; x1 + x2 = … ; x1. x2 = … ;

b) 5×2 – x – 35 = 0;

Δ = … ; x1 + x2 = … ; x1. x2 = … ;

c) 8×2 – x + 1 = 0 ;

Δ = … ; x1 + x2 = … ; x1. x2 = … ;

d) 25×2 + 10x + 1 = 0 ;

Δ = … ; x1 + x2 = … ; x1. x2 = … ;

Lời giải

a) 2×2 – 17x + 1 = 0

Có a = 2 ; b = – 17 ; c = 1
Δ = b2 – 4 ac = ( – 17 ) 2 – 4.2.1 = 281 > 0 .
Theo hệ thức Vi-et : phương trình có hai nghiệm x1 ; x2 thỏa mãn nhu cầu :
x1 + x2 = – b / a = 17/2
x1. x2 = c / a = 50% .

b) 5×2 – x – 35 = 0

Có a = 5 ; b = – 1 ; c = – 35 ;
Δ = b2 – 4 ac = ( – 1 ) 2 – 4.5. ( – 35 ) = 701 > 0
Theo hệ thức Vi-et, phương trình có hai nghiệm x1 ; x2 thỏa mãn nhu cầu :

x1 + x2 = – b / a = 1/5
x1. x2 = c / a = – 35/5 = – 7 .

c) 8×2 – x + 1 = 0

Có a = 8 ; b = – 1 ; c = 1
Δ = b2 – 4 ac = ( – 1 ) 2 – 4.8.1 = – 31 < 0 Phương trình vô nghiệm nên không sống sót x1 ; x2 .

d) 25×2 + 10x + 1 = 0

Có a = 25 ; b = 10 ; c = 1
Δ = b2 – 4 ac = 102 – 4.25.1 = 0
Khi đó theo hệ thức Vi-et có :
x1 + x2 = – b / a = – 10/25 = – 2/5
x1. x2 = c / a = 1/25 .

Kiến thức áp dụng

Bài 6: Hệ thức Vi-ét và ứng dụng

Bài 26 (trang 53 SGK Toán 9 tập 2): Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau:

a) 35×2 – 37x + 2 = 0;

b) 7×2 + 500x – 507 = 0;

c) x2 – 49x – 50 = 0;

d) 4321×2 + 21x – 4300 = 0.

Lời giải

a) Phương trình 35×2 – 37x + 2 = 0

Có a = 35 ; b = – 37 ; c = 2 ⇒ a + b + c = 0
⇒ Phương trình có nghiệm x1 = 1 ; x2 = c / a = 2/35 .

b) Phương trình 7×2 + 500x – 507 = 0

Có a = 7 ; b = 500 ; c = – 507 ⇒ a + b + c = 7 + 500 – 507 = 0
⇒ Phương trình có nghiệm x1 = 1 ; x2 = c / a = – 507 / 7 .

c) Phương trình x2 – 49x – 50 = 0

Có a = 1 ; b = – 49 ; c = – 50 ⇒ a – b + c = 1 – ( – 49 ) – 50 = 0
⇒ Phương trình có nghiệm x1 = – 1 ; x2 = – c / a = 50 .

d) Phương trình 4321×2 + 21x – 4300 = 0

Có a = 4321 ; b = 21 ; c = – 4300 ⇒ a – b + c = 4321 – 21 – 4300 = 0
⇒ Phương trình có nghiệm x1 = – 1 ; x2 = – c / a = 4300 / 4321 .

Kiến thức áp dụng

Bài 6: Hệ thức Vi-ét và ứng dụng

Bài 27 (trang 53 SGK Toán 9 tập 2): Dùng hệ thức Vi-et để tính nhẩm các nghiệm của phương trình.

a ) x2 – 7 x + 12 = 0 ;
b ) x2 + 7 x + 12 = 0 .

Xem thêm  Phép Tịnh Tiến Và Các Dạng Bài Tập Về Phép Tịnh Tiến | Lessonopoly

Lời giải

a ) x2 – 7 x + 12 = 0
Có a = 1 ; b = – 7 ; c = 12
⇒ Δ = b2 – 4 ac = ( – 7 ) 2 – 4.1.12 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt x1 ; x2 thỏa mãn nhu cầu :

Giải bài 27 trang 53 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 27 Trang 53 Sgk Toan 9 Tap 2 1

Vậy thuận tiện nhận thấy phương trình có hai nghiệm là 3 và 4 .
b ) x2 + 7 x + 12 = 0
Có a = 1 ; b = 7 ; c = 12
⇒ Δ = b2 – 4 ac = 72 – 4.1.12 = 1 > 0

⇒ Phương trình có hai nghiệm phân biệt x1 ; x2 thỏa mãn nhu cầu :

Giải bài 27 trang 53 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 27 Trang 53 Sgk Toan 9 Tap 2 2
Vậy thuận tiện nhận thấy phương trình có hai nghiệm là – 3 và – 4 .

Kiến thức áp dụng

Bài 6: Hệ thức Vi-ét và ứng dụng

Bài 28 (trang 53 SGK Toán 9 tập 2): Tìm hai số u và v trong mỗi trường hợp sau:

a ) u + v = 32, uv = 231
b ) u + v = – 8, uv = – 105
c ) u + v = 2, uv = 9

Lời giải

a ) S = 32 ; P = 231 ⇒ S2 – 4P = 322 – 4.231 = 100 > 0

⇒ Tồn tại u và v là hai nghiệm của phương trình: x2 – 32x + 231 = 0.

Ta có : Δ = ( – 32 ) 2 – 4.231 = 100 > 0
⇒ PT có hai nghiệm :

Giải bài 28 trang 53 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 28 Trang 53 Sgk Toan 9 Tap 2 1

Vậy u = 21 ; v = 11 hoặc u = 11 ; v = 21 .
b ) S = – 8 ; P = – 105 ⇒ S2 – 4P = ( – 8 ) 2 – 4. ( – 105 ) = 484 > 0
⇒ u và v là hai nghiệm của phương trình : x2 + 8 x – 105 = 0
Ta có : Δ ’ = 42 – 1. ( – 105 ) = 121 > 0
Phương trình có hai nghiệm :

Giải bài 28 trang 53 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 28 Trang 53 Sgk Toan 9 Tap 2 2

Vậy u = 7 ; v = – 15 hoặc u = – 15 ; v = 7 .
c ) S = 2 ; P = 9 ⇒ S2 – 4P = 22 – 4.9 = – 34 < 0 ⇒ Không sống sót u và v thỏa mãn nhu cầu .

Kiến thức áp dụng

Bài 6: Hệ thức Vi-ét và ứng dụng

Luyện tập (trang 54 sgk Toán 9 Tập 2)

Bài 29 (trang 54 SGK Toán 9 tập 2): Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình sau:

a) 4×2 + 2x – 5 = 0;

b) 9×2 – 12x + 4 = 0;

c) 5×2 + x + 2 = 0;

d) 159×2 – 2x – 1 = 0.

Lời giải

a) Phương trình 4×2 + 2x – 5 = 0

Có a = 4 ; b = 2 ; c = – 5, a. c < 0 ⇒ Phương trình có hai nghiệm x1 ; x2 Theo hệ thức Vi-et ta có : Giải bài tập Vật lý lớp 12 nâng cao Bai 29 Trang 54 Sgk Toan 9 Tap 2 1

b) Phương trình 9×2 – 12x + 4 = 0

Có a = 9 ; b = – 12 ; c = 4 ⇒ Δ ’ = ( – 6 ) 2 – 4.9 = 0
⇒ Phương trình có nghiệm kép x1 = x2 .

Theo hệ thức Vi-et ta có: Giải bài tập Vật lý lớp 12 nâng cao Bai 29 Trang 54 Sgk Toan 9 Tap 2 2

c) Phương trình 5×2 + x + 2 = 0

Có a = 5 ; b = 1 ; c = 2 ⇒ Δ = 12 – 4.2.5 = – 39 < 0 ⇒ Phương trình vô nghiệm .

d) Phương trình 159×2 – 2x – 1 = 0

Có a = 159 ; b = – 2 ; c = – 1 ; a. c < 0 ⇒ Phương trình có hai nghiệm phân biệt x1 ; x2 .

Theo hệ thức Vi-et ta có: Giải bài tập Vật lý lớp 12 nâng cao Bai 29 Trang 54 Sgk Toan 9 Tap 2 3

Kiến thức áp dụng

Bài 6: Hệ thức Vi-ét và ứng dụng

Luyện tập (trang 54 sgk Toán 9 Tập 2)

Bài 30 (trang 54 SGK Toán 9 tập 2): Tìm giá trị của m để phương trình có nghiệm, rồi tính tổng và tích các nghiệm theo m.

a) x2 – 2x + m = 0;

b) x2 + 2(m – 1)x + m2 = 0.

Lời giải

a) Phương trình x2 – 2x + m = 0

Có a = 1 ; b = – 2 ; c = m
⇒ Δ ’ = ( – 1 ) 2 – 1. m = 1 – m
Phương trình có nghiệm ⇔ Δ ’ ≥ 0 ⇔ 1 – m ≥ 0 ⇔ m ≤ 1 .
Khi đó, theo định lý Vi-et :
Giải bài 30 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 30 Trang 54 Toan 9 Tap 2 1
Vậy với m ≤ 1, phương trình có hai nghiệm có tổng bằng 2 ; tích bằng m .

Xem thêm  Top 5 Phần Mềm Lịch Việt Trên Desktop Miễn Phí Hay Nhất, Vietnamese Calendar V3

b) Phương trình x2 + 2(m – 1)x + m2 = 0

Có a = 1 ; b = 2 ( m – 1 ) ; c = mét vuông
⇒ Δ ’ = b ’ 2 – ac = ( m – 1 ) 2 – mét vuông = 2 m – 1 .
Phương trình có nghiệm ⇔ Δ ’ ≥ 0 ⇔ 2 m – 1 ≥ 0 ⇔ m ≥ 50% .

Khi đó, theo định lý Vi-et: Giải bài 30 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 30 Trang 54 Toan 9 Tap 2 2

Vậy với m ≥ ½, phương trình có hai nghiệm có tổng bằng – 2 ( m – 1 ), tích bằng mét vuông .

Kiến thức áp dụng

Bài 6: Hệ thức Vi-ét và ứng dụng

Luyện tập (trang 54 sgk Toán 9 Tập 2)

Bài 31 (trang 54 SGK Toán 9 tập 2): Tính nhẩm nghiệm của các phương trình:

Giải bài 31 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 31 Trang 54 Toan 9 Tap 2 1

Lời giải

a ) 1,5 x2 – 1,6 x + 0,1 = 0
Có a = 1,5 ; b = – 1,6 ; c = 0,1
⇒ a + b + c = 1,5 – 1,6 + 0,1 = 0
⇒ Phương trình có hai nghiệm x1 = 1 ; x2 = c / a = 1/15 .

Giải bài 31 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 31 Trang 54 Toan 9 Tap 2 2
d ) ( m – 1 ) x2 – ( 2 m + 3 ) x + m + 4 = 0
Có a = m – 1 ; b = – ( 2 m + 3 ) ; c = m + 4
⇒ a + b + c = ( m – 1 ) – ( 2 m + 3 ) + m + 4 = 0

⇒ Phương trình có hai nghiệm Giải bài 31 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 31 Trang 54 Toan 9 Tap 2 3

Kiến thức áp dụng

Bài 6: Hệ thức Vi-ét và ứng dụng

Luyện tập (trang 54 sgk Toán 9 Tập 2)

Bài 32 (trang 54 SGK Toán 9 tập 2): Tìm hai số u và v trong mỗi trường hợp sau:

a ) u + v = 42, uv = 441
b ) u + v = – 42, uv = – 400
c ) u – v = 5, uv = 24

Lời giải

a ) S = 42 ; P = 441 ⇒ S2 – 4P = 422 – 4.441 = 0
⇒ u và v là hai nghiệm của phương trình : x2 – 42 x + 441 = 0
Có : Δ ’ = ( – 21 ) 2 – 441 = 0
⇒ Phương trình có nghiệm kép x1 = x2 = – b ’ / a = 21 .
Vậy u = v = 21 .
b ) S = – 42 ; P = – 400 ⇒ S2 – 4P = ( – 42 ) 2 – 4. ( – 400 ) = 3364 > 0
⇒ u và v là hai nghiệm của phương trình : x2 + 42 x – 400 = 0
Có Δ ’ = 212 – 1. ( – 400 ) = 841
⇒ Phương trình có hai nghiệm phân biệt :

Giải bài 32 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 32 Trang 54 Toan 9 Tap 2 1

Vậy u = 8 ; v = – 50 hoặc u = – 50 ; v = 8 .

c ) u – v = 5 ⇒ u + ( – v ) = 5
u. v = 24 ⇒ u. ( – v ) = – uv = – 24 .
S = 5 ; P = – 24 ⇒ S2 – 4P = 52 – 4. ( – 24 ) = 121 > 0
⇒ u và – v là hai nghiệm của phương trình : x2 – 5 x – 24 = 0
Có Δ = ( – 5 ) 2 – 4.1. ( – 24 ) = 121
⇒ Phương trình có hai nghiệm phân biệt

Giải bài 32 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 32 Trang 54 Toan 9 Tap 2 2
⇒ u = 8 ; – v = – 3 hoặc u = – 3 ; – v = 8
⇒ u = 8 ; v = 3 hoặc u = – 3 ; v = – 8 .

Kiến thức áp dụng

Bài 6: Hệ thức Vi-ét và ứng dụng

Luyện tập (trang 54 sgk Toán 9 Tập 2)

Bài 33 (trang 54 SGK Toán 9 tập 2): Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:

ax2 + bx + c = a ( x – x1 ) ( x – x2 )
Áp dụng : nghiên cứu và phân tích đa thức thành nhân tử .
a ) 2×2 – 5 x + 3 ; b ) 3×2 + 8 x + 2

Lời giải

* Chứng minh :
Phương trình ax2 + bx + c = 0 có hai nghiệm x1 ; x2

⇒ Theo định lý Vi-et: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 33 Trang 54 Sgk Toan 9 Tap 2 1

Khi đó : a. ( x – x1 ). ( x – x2 )
= a. ( x2 – x1. x – x2. x + x1. x2 )
= a. x2 – a. x. ( x1 + x2 ) + a. x1. x2

= Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 33 Trang 54 Sgk Toan 9 Tap 2 2

= a. x2 + bx + c ( đpcm ) .
* Áp dụng :
a ) 2×2 – 5 x + 3 = 0
Có a = 2 ; b = – 5 ; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0

⇒ Phương trình có hai nghiệm Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 33 Trang 54 Sgk Toan 9 Tap 2 3

Vậy: 2×2 – 5x + 3 = Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 33 Trang 54 Sgk Toan 9 Tap 2 4

b ) 3×2 + 8 x + 2 = 0
Có a = 3 ; b = 8 ; c = 2

⇒ Δ’ = 42 – 2.3 = 10 > 0

⇒ Phương trình có hai nghiệm phân biệt :

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9 Bai 33 Trang 54 Sgk Toan 9 Tap 2 5

Source: https://bem2.vn
Category: Ứng dụng hay

Rate this post

Bài viết liên quan

Để lại ý kiến của bạn:

Email của bạn sẽ không được hiển thị công khai.